Bewehrungskorrosion: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 7: Zeile 7:
Das als stabiles Oxid gewonnene Eisenerz (Fe<sub><small>2</small></sub>O<sub><small>3</small></sub>) wird bei der Herstellung von Eisen und Stahl durch Energiezufuhr auf ein höheres Energieniveau (Fe) angehoben, ist aber auf diesem Energieniveau thermodynamisch nicht stabil und hat das Bestreben, in den energieärmeren Zustand als Oxid zurückzukehren. Diese Korrosion bzw. Oxidation von Metallen ist ein elektrochemischer Vorgang, der immer an das Vorhandensein eines Elektrolyten, meist Wasser, für den Transport von Ionen gebunden ist. Im Kontakt mit dem Elektrolyten gehen an der Anode eines korrodierenden Stahls positiv geladene Metallionen (Me<sup>+</sup>) in Lösung, die überschüssigen Elektronen (e<sup>–</sup>) wandern zur Kathode und reagieren dort mit Wasser und im Wasser gelösten Sauerstoff zu negativ geladenen Hydroxylionen (OH<sup>–</sup>). Vereinfacht betrachtet entspricht diese Korrosion den Vorgängen in einer Batterie mit einem elektrischen und einem elektrolytischen Teil eines Stromkreislaufs. <br />
Das als stabiles Oxid gewonnene Eisenerz (Fe<sub><small>2</small></sub>O<sub><small>3</small></sub>) wird bei der Herstellung von Eisen und Stahl durch Energiezufuhr auf ein höheres Energieniveau (Fe) angehoben, ist aber auf diesem Energieniveau thermodynamisch nicht stabil und hat das Bestreben, in den energieärmeren Zustand als Oxid zurückzukehren. Diese Korrosion bzw. Oxidation von Metallen ist ein elektrochemischer Vorgang, der immer an das Vorhandensein eines Elektrolyten, meist Wasser, für den Transport von Ionen gebunden ist. Im Kontakt mit dem Elektrolyten gehen an der Anode eines korrodierenden Stahls positiv geladene Metallionen (Me<sup>+</sup>) in Lösung, die überschüssigen Elektronen (e<sup>–</sup>) wandern zur Kathode und reagieren dort mit Wasser und im Wasser gelösten Sauerstoff zu negativ geladenen Hydroxylionen (OH<sup>–</sup>). Vereinfacht betrachtet entspricht diese Korrosion den Vorgängen in einer Batterie mit einem elektrischen und einem elektrolytischen Teil eines Stromkreislaufs. <br />
Je höher das elektrochemische Potential eines Metalls in wässrigen Lösungen ist, desto geringer ist die Korrosionsbereitschaft des Metalls oder desto edler ist das Metall. Als Edelmetall werden Metalle bezeichnet, die unter normalen atmosphärischen Bedingungen nicht korrodieren.<br />
Je höher das elektrochemische Potential eines Metalls in wässrigen Lösungen ist, desto geringer ist die Korrosionsbereitschaft des Metalls oder desto edler ist das Metall. Als Edelmetall werden Metalle bezeichnet, die unter normalen atmosphärischen Bedingungen nicht korrodieren.<br />
Die [[Bewehrung]] im [[Stahlbeton]] ist durch die hohe Alkalität des Porenwassers mit [[pH-Wert|pH-Werten]] zwischen  12,5 und 13,5 vor Korrosion geschützt, da sich bei solchen pH-Werten auf der Stahloberfläche eine Passivschicht bildet ([[Passiver Korrosionsschutz]]), welche die anodische Eisenauflösung praktisch unterbindet. Der passive Korrosionsschutz kann durch [[Carbonatisierung]] oder [[Chloridgehalt|Chlorideinwirkung]] verloren gehen.
Die [[Bewehrung]] im [[Stahlbeton]] ist durch die hohe Alkalität des Porenwassers mit [[pH-Wert|pH-Werten]] zwischen  12,5 und 13,5 vor Korrosion geschützt, da sich bei solchen pH-Werten auf der Stahloberfläche eine Passivschicht bildet ([[Passiver Korrosionsschutz]]), welche die anodische Eisenauflösung praktisch unterbindet. Der passive Korrosionsschutz kann durch [[Carbonatisierung]] oder [[Chloridgehalt|Chlorideinwirkung]] verloren gehen.<br />
 
''Instandsetzungsprinzipien''<br />
Maßnahmen zur Herstellung des Korrosionsschutzes im Rahmen von Instandsetzungs- bzw. Instandhaltungsmaßnahmen beruhen auf diesen elektrochemischen Gesetzmäßigkeiten:<br />
a) Vermeiden der anodischen Teilreaktion<br />
Eine Möglichkeit besteht darin, das alkalische Milieu und damit den [[Passiver Korrosionsschutz|passiven Korrosionsschutz]] in der Umgebung der [[Bewehrung]] durch Auftrag eines zementgebundenen Mörtels wiederherzustellen (Repassisvierung). Eine zweite Möglichkeit ist, die Bewehrung in einem geschlossenen Regelkreis zwingt, kathodisch zu wirken (kathodischer Korrosionsschutz). Eine weitere Möglichkeit bietet die Trennung des Elektrolyten vom Stahl durch eine wirksame [[Beschichtung]] der Bewehrung.<br />
b) Unterbinden des elektrolytischen Teilprozesses<br />
Durch Absenkung des Wassergehalts im Beton kann die Korrosionsgeschwindigkeit auf praktisch vernachlässigbare Werte gesenkt werden, da alle beschriebenen Transportvorgänge im Beton gehemmt werden. Dazu wird über geeignete Oberflächenschutzsysteme das Eindringen von Wasser von außen verhindert. Darüber hinaus muss aber auch verhindert werden, dass Wasserdampf von innen oder Bodenfeuchte in das Bauteil eindringen.


==Literatur==
==Literatur==
9.697

Bearbeitungen




Wir verwenden für unsere Seite ausschließlich technisch notwendige Cookies. Weitere Informationen dazu finden Sie in unseren Datenschutzhinweisen

Navigationsmenü