Hydratationswärme: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
Zeile 5: Zeile 5:
Große Hydratationswärmeentwicklung kann in dicken Betonbauteilen ([[massige Bauteile]]) zu großen Temperaturunterschieden zwischen Kern und Betonoberfläche führen. Daraus können [[Zwangsspannungen]] und [[Risse]] entstehen. Um unter diesen Randbedingungen die [[Gebrauchstauglichkeit]] und die [[Dauerhaftigkeit]] dieser Betonbauteile sicherzustellen, sind besondere Maßnahmen sinnvoll (siehe "[[Massige Bauteile]]").<br>
Große Hydratationswärmeentwicklung kann in dicken Betonbauteilen ([[massige Bauteile]]) zu großen Temperaturunterschieden zwischen Kern und Betonoberfläche führen. Daraus können [[Zwangsspannungen]] und [[Risse]] entstehen. Um unter diesen Randbedingungen die [[Gebrauchstauglichkeit]] und die [[Dauerhaftigkeit]] dieser Betonbauteile sicherzustellen, sind besondere Maßnahmen sinnvoll (siehe "[[Massige Bauteile]]").<br>


Das Messen der Hydratationswärme mit dem Lösungskalorimeter (Lösungswärmeverfahren) ist in vielen nationalen Zementnormen (z. B. DIN EN 196-8) vorgeschrieben, um Zemente mit niedriger Hydratationswärmeentwicklung zu kennzeichnen. Damit wird die Wärmemenge gemessen, die beim Auflösen des nicht hydratisierten und des isotherm bei 20 °C hydratisierten Zements (w/z = 0,4) in einem Gemisch aus 39 Vol.-Teilen Salpetersäure (2,00 N) und 1 Vol.-Teil Flusssäure (38 M.-% bis 40 M.-%) frei wird. Die Differenz der beiden Lösungswärmen ist die Hydratationswärme.<br>
Das Messen der Hydratationswärme mit dem Lösungskalorimeter (Lösungswärmeverfahren) ist in vielen nationalen Zementnormen (z. B. DIN EN 196-8) vorgeschrieben, um [[LH-Zement|Zemente mit niedriger Hydratationswärmeentwicklung]] zu kennzeichnen. Damit wird die Wärmemenge gemessen, die beim Auflösen des nicht hydratisierten und des isotherm bei 20 °C hydratisierten Zements (w/z = 0,4) in einem Gemisch aus 39 Vol.-Teilen Salpetersäure (2,00 N) und 1 Vol.-Teil Flusssäure (38 M.-% bis 40 M.-%) frei wird. Die Differenz der beiden Lösungswärmen ist die Hydratationswärme.<br>
Für die Bestimmung der Hydratationswärme mit dem Lösungswärmeverfahren hydratisieren die Zementproben bei konstanter Temperatur, beim [[Adiabatisch|adiabatischen Verfahren]] aber bei ständig steigender Temperatur und dementsprechend schneller. Das adiabatische Verfahren liefert deshalb insbesondere zu Beginn der [[Hydratation]] höhere Werte als das Lösungswärmeverfahren. Beim adiabatischen Verfahren hängt der Temperaturanstieg in dem [[Mörtel]] oder Beton - und infolgedessen auch der Hydratationsfortschritt und die Hydratationswärme - stark vom [[Zementgehalt]] ab. Das Verfahren eignet sich daher vor allem für die Baupraxis, um für einen Beton mit der geplanten Zusammensetzung die zu erwartende Wärmeentwicklung zu ermitteln.
Für die Bestimmung der Hydratationswärme mit dem Lösungswärmeverfahren hydratisieren die Zementproben bei konstanter Temperatur, beim [[Adiabatisch|adiabatischen Verfahren]] aber bei ständig steigender Temperatur und dementsprechend schneller. Das adiabatische Verfahren liefert deshalb insbesondere zu Beginn der [[Hydratation]] höhere Werte als das Lösungswärmeverfahren. Beim adiabatischen Verfahren hängt der Temperaturanstieg in dem [[Mörtel]] oder Beton - und infolgedessen auch der Hydratationsfortschritt und die Hydratationswärme - stark vom [[Zementgehalt]] ab. Das Verfahren eignet sich daher vor allem für die Baupraxis, um für einen Beton mit der geplanten Zusammensetzung die zu erwartende Wärmeentwicklung zu ermitteln.


9.697

Bearbeitungen




Wir verwenden für unsere Seite ausschließlich technisch notwendige Cookies. Weitere Informationen dazu finden Sie in unseren Datenschutzhinweisen

Navigationsmenü