Tunnelbau: Unterschied zwischen den Versionen

327 Bytes hinzugefügt ,  21. Januar 2016
keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
[[Datei:V11153 DB-NeubaustrIdstein.jpg|mini|In offener Bauweise erstellter DB-Tunnel bei Idstein]]
[[Datei:V11153 DB-NeubaustrIdstein.jpg|mini|In offener Bauweise erstellter DB-Tunnel bei Idstein]]
Tunnelbauwerke sind unterirdische Verkehrsanlagen. Sie unterscheiden sich von [[Stollen]] dadurch, dass die Tunnelröhre an beiden Seiten zutage tritt. <br />
Eigenständiges Gebiet des [[Ingenieurbau|Ingenieurbaus]]. <br />
Nach Art der Herstellung wird unterschieden in offene und geschlossene Bauweisen sowie in Bauweisen unter Wasser. Offene Bauweisen sind durch Baugruben gekennzeichnet, in denen die Tunnel von der Geländeoberfläche aus hergestellt werden. Geschlossene Bauweisen werden teilweise oder vollständig untertage ausgeführt. <br />
Tunnelbauwerke dienen in erster Linie als unterirdische Verkehrsanlagen. Sie unterscheiden sich von [[Stollen]] dadurch, dass die Tunnelröhre an beiden Seiten zutage tritt. <br />
Nach Art der Herstellung wird unterschieden in offene und geschlossene Bauweisen sowie in Bauweisen unter Wasser. Offene Bauweisen sind durch [[Baugruben]] gekennzeichnet, in denen die Tunnel von der Geländeoberfläche aus hergestellt werden. Geschlossene Bauweisen werden teilweise oder vollständig untertage ausgeführt. <br />


Die Belastungen der Tunnelwände sind extrem. Sie müssen dauerhaft dem Gebirgsdruck – auch im Brandfall – standhalten, das Eindringen von Wasser in den Tunnelquerschnitt verhindern, dem chemischen Angriff durch angreifende Wässer widerstehen und wirtschaftlich zu bauen und zu unterhalten sein. Aufgrund der hohen Investitionskosten für Tunnelbauwerke werden sie für Nutzungsdauern von in der Regel über 100 Jahren konzipiert. Aus betrieblichen und wirtschaftlichen Gründen verzichten die Betreiber gerne auf Tunnelwandverkleidungen.<br />
Die Belastungen der Tunnelwände sind extrem. Sie müssen dauerhaft dem Gebirgsdruck – auch im Brandfall – standhalten, das Eindringen von Wasser in den Tunnelquerschnitt verhindern, dem [[Chemischer Angriff|chemischen Angriff]] durch [[angreifende Wässer]] widerstehen und wirtschaftlich zu bauen und zu unterhalten sein. Aufgrund der hohen Investitionskosten für Tunnelbauwerke werden sie für Nutzungsdauern von in der Regel über 100 Jahren konzipiert. Aus betrieblichen und wirtschaftlichen Gründen verzichten die Betreiber gerne auf Tunnelwandverkleidungen.<br />
Beton erfüllt alle Anforderungen an den modernen Tunnelbau – und zwar für alle heute üblichen Bauweisen.<br />
Beton erfüllt alle Anforderungen an den modernen Tunnelbau – und zwar für alle heute üblichen Bauweisen.<br />


Zeile 12: Zeile 13:
Im standfesten Gebirge erfolgt der Ausbruch meist im Sprengvortrieb. Beim modernen Vollausbau ([[Spritzbetonbauweise]] oder Neue Österreichische Tunnelbauweise NÖT) werden die freigelegte Flächen durch [[Spritzbeton]], Felsanker, Stahlbögen und andere Bauelemente gesichert. Das Tunnelprofil ist annähernd kreisförmig.<br />
Im standfesten Gebirge erfolgt der Ausbruch meist im Sprengvortrieb. Beim modernen Vollausbau ([[Spritzbetonbauweise]] oder Neue Österreichische Tunnelbauweise NÖT) werden die freigelegte Flächen durch [[Spritzbeton]], Felsanker, Stahlbögen und andere Bauelemente gesichert. Das Tunnelprofil ist annähernd kreisförmig.<br />


Im nicht standfesten Gestein werden selten noch traditionelle Bauweisen, meist aber der Schildvortrieb angewendet. Hier wird ein als Deckschild bezeichneter kreisrunder Stahlzylinder im Querschnitt des späteren Tunnelprofils mit hydraulischen Pressen vorgetrieben. Ein rotierender Bohrkopf löst das Gestein im Durchmesser des Endquerschnitts und fördert es über das Schildinnere auf Förderbänder. Das Gebirge wird mit Tübbings ausgekleidet, wobei meistens sieben Tübbings einen geschlossenen Ring ergeben. Der Raum zwischen Tübbing und Gebirge wird verpresst (Ringspaltverpressung). Bei wasserführenden Gesteinsschichten kann der Arbeitsraum durch eine Rückwand abgeschlossen und unter Überdruck gesetzt werden, so dass kein Wasser in die Vortriebsmaschine eindringen kann.<br />
Im nicht standfesten Gestein werden selten noch traditionelle Bauweisen, meist aber der Schildvortrieb angewendet. Hier wird ein als Deckschild bezeichneter kreisrunder Stahlzylinder im Querschnitt des späteren Tunnelprofils mit hydraulischen Pressen vorgetrieben. Ein rotierender Bohrkopf löst das Gestein im Durchmesser des Endquerschnitts und fördert es über das Schildinnere auf Förderbänder. Das Gebirge wird mit Tübbings ausgekleidet, wobei meistens sieben [[Tübbings]] einen geschlossenen Ring ergeben. Der Raum zwischen Tübbing und Gebirge wird verpresst (Ringspaltverpressung). Bei wasserführenden Gesteinsschichten kann der Arbeitsraum durch eine Rückwand abgeschlossen und unter Überdruck gesetzt werden, so dass kein Wasser in die Vortriebsmaschine eindringen kann.<br />


Bei geringen Erdüberdeckungen, z. B. bei Unterfahrungen von Bebauung im innerstädtischen Bereich, werden das HDI- und das [[Gefrierverfahren]] eingesetzt. Beim HDI-Verfahren werden unter hohem Druck [[Zement|Zementsuspensionen]] über horizontale oder leicht geneigte Bohrungen in den Baugrund gepresst. Die so entstehenden sehr langen HDI-Säulen stabilisieren den Boden. Unter dem Fächer der HDI-Säulen erfolgt dann der Tunnelvortrieb. Beim eher selten eingesetzten Gefrierverfahren wird dasselbe Ergebnis über die Vereisung des Baugrunds über horizontale Langstreckenbohrungen erreicht. <br />
Bei geringen Erdüberdeckungen, z. B. bei Unterfahrungen von Bebauung im innerstädtischen Bereich, werden das [[Hochdruckinjektionen mit Zementsuspensionen|Hochdruckinjektionsverfahren]] (HDI) und das [[Gefrierverfahren]] eingesetzt. Beim HDI-Verfahren werden unter hohem Druck [[Zement|Zementsuspensionen]] über horizontale oder leicht geneigte Bohrungen in den Baugrund gepresst. Die so entstehenden sehr langen HDI-Säulen stabilisieren den Boden. Unter dem Fächer der HDI-Säulen erfolgt dann der Tunnelvortrieb. Beim eher selten eingesetzten Gefrierverfahren wird dasselbe Ergebnis über die Vereisung des Baugrunds über horizontale Langstreckenbohrungen erreicht. <br />


Die offene Bauweise ist bei geringer Tiefenlage des Tunnels eine sehr kostengünstige Bauweise. Vor dem Bodenaushub werden Baugrubenumschließungen, z.B. als [[Bohrpfahl|Bohrpfahlwände]] oder [[Schlitzwand|Schlitzwände]], eingebracht, die oft konstruktiv in das entstehende Tunnelbauwerk einbezogen werden. Normalerweise bleibt die Baugrube während der gesamten Bauzeit der Sohlen und Wände offen. Erst nach dem Abschluss dieser Arbeiten wird die Decke betoniert und mit Erdreich überschüttet. Bei der Deckelbauweise wird bei Erreichen einer Höhe, in der Bagger und Radlader arbeiten können, ein oberer Deckel betoniert, unter dem die weiteren Arbeiten stattfinden können, während auf dem Deckel z. B. schon wieder der Straßenverkehr fließt. Der Tunnelquerschnitt ist meist rechteckig.<br />
Die offene Bauweise ist bei geringer Tiefenlage des Tunnels eine sehr kostengünstige Bauweise. Vor dem Bodenaushub werden [[Baugruben|Baugrubenumschließungen]], z.B. als [[Bohrpfahl|Bohrpfahlwände]] oder [[Schlitzwand|Schlitzwände]], eingebracht, die oft konstruktiv in das entstehende Tunnelbauwerk einbezogen werden. Normalerweise bleibt die [[Baugruben|Baugrube]] während der gesamten Bauzeit der Sohlen und Wände offen. Erst nach dem Abschluss dieser Arbeiten wird die Decke betoniert und mit Erdreich überschüttet. Bei der Deckelbauweise wird bei Erreichen einer Höhe, in der Bagger und Radlader arbeiten können, ein oberer Deckel betoniert, unter dem die weiteren Arbeiten stattfinden können, während auf dem Deckel z. B. schon wieder der Straßenverkehr fließt. Der Tunnelquerschnitt ist meist rechteckig.<br />


Zur Querung von Gewässern wird auch die Einschwimm- und Absenktechnik (Senkkasten oder Caissons aus Beton) angewendet. Hier werden an Land vorgefertigte Senkkästen (Caissons) aus Beton mit rechteckigem Querschnitt eingeschwommen und in das Flussbett abgesenkt.<br />
Zur Querung von Gewässern wird auch die Einschwimm- und Absenktechnik (Senkkasten oder Caissons aus Beton) angewendet. Hier werden an Land vorgefertigte Senkkästen (Caissons) aus Beton mit rechteckigem Querschnitt eingeschwommen und in das Flussbett abgesenkt.<br />
Zeile 24: Zeile 25:


[[Tübbings]] für Tunnelschalen<br />
[[Tübbings]] für Tunnelschalen<br />
Die Anzahl der Tunnelbauwerke, die im Schildvortrieb mit einschaligen, wasserdichten Tübbingauskleidungen erstellt wurden, hat in den letzten Jahren weltweit sprunghaft zugenommen. Die [[Tübbings]] werden in der für den Einbau erforderlichen hohen Präzision in einer Feldfabrik oder in einem Betonfertigteilwerk hergestellt und auf Schienenfahrzeugen zur Einbaustelle transportiert. Im Schildschwanz der Vortriebsanlage werden die Tübbings aufgenommen und an das Gebirge gesetzt. Sieben Tübbings ergeben meist einen geschlossenen Ring. <br />
Die Anzahl der Tunnelbauwerke, die im Schildvortrieb mit einschaligen, wasserdichten Tübbingauskleidungen erstellt wurden, hat in den letzten Jahren weltweit sprunghaft zugenommen. Die [[Tübbings]] werden in der für den Einbau erforderlichen hohen Präzision in einer Feldfabrik oder in einem [[Fertigteilwerk|Betonfertigteilwerk]] hergestellt und auf Schienenfahrzeugen zur Einbaustelle transportiert. Im Schildschwanz der Vortriebsanlage werden die Tübbings aufgenommen und an das Gebirge gesetzt. Sieben Tübbings ergeben meist einen geschlossenen Ring. <br />


Brandschutz <br />
[[Brandschutz]] <br />
In den letzten Jahren ist mehrfach deutlich geworden, welche katastrophalen Auswirkungen Tunnelbrände haben können. Neben den furchtbaren Folgen für Personen können aufgrund der extremen Hitzeeinwirkung auch Schäden an der tragenden Tunnelkonstruktion entstehen. Die maximalen Temperaturen bei Brandversuchen mit Straßenfahrzeugen erreichten im Bereich der Tunneldecke nach nur 5 bis 10 Minuten 800 °C bis 1000 °C. Versuche zeigen, dass der maßgebende Temperaturanstieg bei einem Tunnelbrand wesentlich stärker ist, als dies üblicherweise für den Hochbau angenommen wird. Die Regelwerke sehen als Brandschutzmaßnahmen eine Bekleidung der Tunnelinnenschale oder den Einbau eines feuerwiderstandsfähigen Betons vor. Aus wirtschaftlichen Gründen streben Tunnelbetreiber unverkleidete Konstruktionen an.<br />
In den letzten Jahren ist mehrfach deutlich geworden, welche katastrophalen Auswirkungen Tunnelbrände haben können. Neben den furchtbaren Folgen für Personen können aufgrund der extremen Hitzeeinwirkung auch Schäden an der tragenden Tunnelkonstruktion entstehen. Die maximalen Temperaturen bei Brandversuchen mit Straßenfahrzeugen erreichten im Bereich der Tunneldecke nach nur 5 bis 10 Minuten 800 °C bis 1000 °C. Versuche zeigen, dass der maßgebende Temperaturanstieg bei einem Tunnelbrand wesentlich stärker ist, als dies üblicherweise für den Hochbau angenommen wird. Die Regelwerke sehen als Brandschutzmaßnahmen eine Bekleidung der Tunnelinnenschale oder den Einbau eines feuerwiderstandsfähigen Betons vor. Aus wirtschaftlichen Gründen streben Tunnelbetreiber unverkleidete Konstruktionen an.<br />
Der Feuerwiderstand von Stahl ist sehr gering, die Temperatursteigerungsrate im Querschnitt sehr hoch. Unverkleideter Stahl verliert im Brandfall sehr schnell seine Tragfähigkeit und es besteht Einsturzgefahr. Bei Tunnelinnenschalen aus Beton liegt die Bewehrung aus Stahl gut geschützt mit ausreichender [[Betondeckung]] im Beton. Da die Temperatursteigerung in einem Betonbauteil gering ist, werden in den inneren oder nicht beflammten Bauteilbereichen keine so hohen Temperaturen erreicht wie auf Flächen, die den Flammen zugewandt sind [9]. Die Betonüberdeckung der für den Brandfall bemessenen Betonbauteile ist so groß, dass auch bei den im Brandfall auftretenden Betonabplatzungen die Standsicherheit der Konstruktion nicht gefährdet ist.  
Der Feuerwiderstand von [[Stahl]] ist sehr gering, die Temperatursteigerungsrate im Querschnitt sehr hoch. Unverkleideter Stahl verliert im Brandfall sehr schnell seine Tragfähigkeit und es besteht Einsturzgefahr. Bei Tunnelinnenschalen aus Beton liegt die [[Bewehrung]] aus Stahl gut geschützt mit ausreichender [[Betondeckung]] im Beton. Da die Temperatursteigerung in einem Betonbauteil gering ist, werden in den inneren oder nicht beflammten Bauteilbereichen keine so hohen Temperaturen erreicht wie auf Flächen, die den Flammen zugewandt sind [9]. Die [[Betondeckung]] der für den Brandfall bemessenen Betonbauteile ist so groß, dass auch bei den im Brandfall auftretenden Betonabplatzungen die [[Standsicherheit]] der Konstruktion nicht gefährdet ist.  
Betoninnenschalen lassen sich nach einem Brand einfach [[Instandsetzung|instandsetzen]], z.B. mit [[Spritzbeton]].<br />
Betoninnenschalen lassen sich nach einem Brand einfach [[Instandsetzung|instandsetzen]], z.B. mit [[Spritzbeton]].<br />
Betonabplatzungen im Brandfall lassen durch betontechnologische Maßnahmen wie Auswahl der [[Gesteinskörnung]] und [[Faserbeton|Faserzugabe]] von vornherein stark reduzieren. Die Betonabplatzungen entstehen in einer mit Wasser gesättigten Zone, wenn durch hohe Brandtemperaturen das Wasser verdampft und die hohen Dampfdrücke die Betonoberfläche absprengen. Die Zugabe von [[Kunststofffaserbeton|Kunststofffasern]], die je nach Faserart bei Temperaturen von rd. 160 °C schmelzen, induzierten im Brandfall haarfeine [[Poren]] und Mikrorisse, die dem Dampf Raum zum Ausdehnen bieten und den Dampfdruck vermindern.<br />
Betonabplatzungen im Brandfall lassen durch betontechnologische Maßnahmen wie Auswahl der [[Gesteinskörnung]] und [[Faserbeton|Faserzugabe]] von vornherein stark reduzieren. Die Betonabplatzungen entstehen in einer mit Wasser gesättigten Zone, wenn durch hohe Brandtemperaturen das Wasser verdampft und die hohen Dampfdrücke die Betonoberfläche absprengen. Die Zugabe von [[Kunststofffaserbeton|Kunststofffasern]], die je nach Faserart bei Temperaturen von rd. 160 °C schmelzen, induzierten im Brandfall haarfeine [[Poren]] und Mikrorisse, die dem Dampf Raum zum Ausdehnen bieten und den Dampfdruck vermindern.<br />
Aspekte des Brandschutzes führen auch dazu, dass in Tunnelstrecken die Straßendecke meist in Betonbauweise ausgeführt wird.
Aspekte des Brandschutzes führen auch dazu, dass in Tunnelstrecken die Straßendecke meist in Betonbauweise ausgeführt wird.
Neben den bekannten vorteilhaften Gebrauchseigenschaften von [[Fahrbahndecke|Fahrbahndecken]] aus Beton ist bezüglich des Einsatzes in Tunnelstrecken vor allem hervorzuheben, dass Beton nicht brennt und somit auch nicht zur Rauchentwicklung bei Tunnelbränden beiträgt. Darüber hinaus spart ihre Helligkeit in Abhängigkeit von der Tunnellänge und der Leuchtdichte der Tunnelbeleuchtung bis zu 35 % der Stromkosten ein. Betondecken reduzieren auch die Unterhaltungsarbeiten im Tunnel, erhöhen durch weniger Verkehrsbeschränkungen die Verkehrssicherheit und verbessern den Verkehrsfluss. Da bergmännisch vorgetriebene Tunnel in aller Regel einen geschlossenen Kreisquerschnitt aufweisen, ist über der Tunnelsohle ausreichend Raum vorhanden, eine Betonfahrbahndecke und die Tragschichten auf einer Kiesausgleichsschicht einbauen zu können. Der Straßenoberbau im Tunnel entspricht dabei der [[Belastungsklassen|Belastungsklasse]] der Fahrbahnbefestigung außerhalb des Tunnelbauwerks. Es ist konstruktiv und baubetrieblich vorteilhaft, wenn sich außerhalb des Tunnelbauwerks eine Fahrbahndecke aus Beton anschließt. Erhält nur die Tunnelstrecke eine [[Fahrbahndecke]] aus Beton, sind besondere Maßnahmen zur Sicherung der letzten Platte erforderlich. Die Herstellung der Betondecke im Tunnel entspricht denselben Prinzipien wie denen auf freier Strecke. Querfugen sollten aber in kürzeren Abständen angeordnet werden, da der ständige Luftzug im Tunnel zu einem stärkeren Austrocknen der oberen Betonschicht führt und sich dadurch unter Umständen die Betonplatten nach oben wölben können. Eine Verkürzung der Plattenlänge auf etwa 4 m wirkt dem entgegen. <br />
Neben den bekannten vorteilhaften Gebrauchseigenschaften von [[Fahrbahndecke|Fahrbahndecken]] aus Beton ist bezüglich des Einsatzes in Tunnelstrecken vor allem hervorzuheben, dass Beton nicht brennt und somit auch nicht zur Rauchentwicklung bei Tunnelbränden beiträgt. Darüber hinaus spart ihre Helligkeit in Abhängigkeit von der Tunnellänge und der Leuchtdichte der Tunnelbeleuchtung bis zu 35 % der Stromkosten ein. Fahrbahndecken aus Beton reduzieren auch die Unterhaltungsarbeiten im Tunnel, erhöhen durch weniger Verkehrsbeschränkungen die Verkehrssicherheit und verbessern den Verkehrsfluss. Da bergmännisch vorgetriebene Tunnel in aller Regel einen geschlossenen Kreisquerschnitt aufweisen, ist über der Tunnelsohle ausreichend Raum vorhanden, eine Betonfahrbahndecke und die [[Tragschicht|Tragschichten]] auf einer Kiesausgleichsschicht einbauen zu können. Der [[Oberbau|Straßenoberbau]] im Tunnel entspricht dabei der [[Belastungsklassen|Belastungsklasse]] der Fahrbahnbefestigung außerhalb des Tunnelbauwerks. Es ist konstruktiv und baubetrieblich vorteilhaft, wenn sich außerhalb des Tunnelbauwerks eine Fahrbahndecke aus Beton anschließt. Erhält nur die Tunnelstrecke eine [[Fahrbahndecke]] aus Beton, sind besondere Maßnahmen zur Sicherung der letzten Platte erforderlich. Die Herstellung der Fahrbahndecke im Tunnel entspricht denselben Prinzipien wie denen auf freier Strecke. [[Querscheinfugen|Querfugen]] sollten aber in kürzeren Abständen angeordnet werden, da der ständige Luftzug im Tunnel zu einem stärkeren Austrocknen der oberen Betonschicht führt und sich dadurch unter Umständen die Betonplatten nach oben wölben können. Eine Verkürzung der Plattenlänge auf etwa 4 m wirkt dem entgegen. <br />


Schallschutz an Tunnelportalen<br />
Schallschutz an Tunnelportalen<br />
9.697

Bearbeitungen