Carbonatisierung: Unterschied zwischen den Versionen

keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
[[Datei:Karbonatisierungsfront.jpg|mini|gerahmt|Feuchtegehalt des Betons und Carbonatisierungsfront]]
[[Datei:Karbonatisierungsfront.jpg|mini|gerahmt|Feuchtegehalt des Betons und Carbonatisierungsfront]]
[[Datei:Karbonatisierungstiefe.jpg|mini|gerahmt|Einfluss der Bauteillage im Freien auf die Karbonatisierungstiefe]]Bildung von [[Calciumcarbonat]] CaCO<sub>3</sub> aus dem Kalkhydrat des [[Zementstein]]s infolge Einwirkung von [[Kohlensäure]]: Ca(OH)<sub>2</sub> + CO<sub>2</sub> ergibt CaCO<sub>3</sub> + H<sub>2</sub>O. Die [[Kohlensäure]] kann aus der umgebenden Luft stammen oder durch kohlensäurehaltiges Wasser zugeführt werden. Für den Rostschutz der [[Bewehrung]] von [[Stahlbeton]] ist die Carbonatisierung von größter Wichtigkeit, da hinter der Carbonatisierungsfront durch die Umwandlung des Kalkhydrats das für den [[passiver Korrosionsschutz|passiven Korrosionsschutz]] erforderliche alkalische Milieu verloren geht. Die [[Betondeckung]] muss immer so dick sein, dass die carbonatisierte Schicht (Carbonatisierungsfront) nicht bis an die [[Bewehrung]] heranreicht. <br>Die Überprüfung, ob ein Beton carbonatisiert ist, erfolgt z. B. an Bruchflächen mit [[Phenolphthalein]].<br>Die Aufnahmefähigkeit des Betons für Kohlensäure - und damit der Fortschritt der Carbonatisierung - hängt stark von seinem Feuchtegehalt ab. Wassergesättigte Körper nehmen praktisch kein CO<sub>2</sub> auf. Aber auch ein vollständig trockener Betonkörper carbonatisiert nicht weiter, da ein gewisser Feuchtegehalt Voraussetzung für den Ablauf der chemischen Reaktion ist. Daher carbonatisieren Bauteile, die direktem Niederschlag ausgesetzt sind, langsamer als Bauteile im Freien, die vor direktem Niederschlag geschützt sind.<br />
[[Datei:Karbonatisierungstiefe.jpg|mini|gerahmt|Einfluss der Bauteillage im Freien auf die Karbonatisierungstiefe]]Bildung von [[Calciumcarbonat]] CaCO<sub>3</sub> aus dem Kalkhydrat Ca(OH)<sub>2</sub> des [[Zementstein]]s infolge Einwirkung von [[Kohlensäure]] CO<sub>2</sub>: Ca(OH)<sub>2</sub> + CO<sub>2</sub> ergibt CaCO<sub>3</sub> + H<sub>2</sub>O. Die [[Kohlensäure]] kann aus der umgebenden Luft stammen oder durch kohlensäurehaltiges Wasser zugeführt werden. Für den Rostschutz der [[Bewehrung]] von [[Stahlbeton]] ist die Carbonatisierung von größter Wichtigkeit, da hinter der Carbonatisierungsfront durch die Umwandlung des Kalkhydrats das für den [[passiver Korrosionsschutz|passiven Korrosionsschutz]] erforderliche alkalische Milieu verloren geht. Die [[Betondeckung]] muss immer so dick sein, dass die carbonatisierte Schicht (Carbonatisierungsfront) nicht bis an die [[Bewehrung]] heranreicht. <br>Die Überprüfung, ob ein Beton carbonatisiert ist, erfolgt z. B. an Bruchflächen mit [[Phenolphthalein]].<br>Die Aufnahmefähigkeit des Betons für Kohlensäure - und damit der Fortschritt der Carbonatisierung - hängt stark von seinem Feuchtegehalt ab. Wassergesättigte Körper nehmen praktisch kein CO<sub>2</sub> auf. Aber auch ein vollständig trockener Betonkörper carbonatisiert nicht weiter, da ein gewisser Feuchtegehalt Voraussetzung für den Ablauf der chemischen Reaktion ist. Daher carbonatisieren Bauteile, die direktem Niederschlag ausgesetzt sind, langsamer als Bauteile im Freien, die vor direktem Niederschlag geschützt sind.<br />
Bewehrter Beton ist in die Expositionsklassen XC (Carbonation) einzuordnen, je nach Feuchtegehalt.
Bewehrter Beton ist in die Expositionsklassen XC (Carbonation) einzuordnen, je nach Feuchtegehalt.
9.695

Bearbeitungen