Brückenbau: Unterschied zwischen den Versionen

Aus beton.wiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 3: Zeile 3:
Brücken stellen nicht nur die kürzeste Verbindung bei der Überwindung von Taleinschnitten und Gewässern dar, sie prägen auch die Landschaft. Schlanke weitgespannte Konstruktionen fügen sich harmonisch in das Landschaftsbild ein. Diesbezüglich hat die [[Spannbeton|Spannbetonbauweise]] dem Baustoff [[Beton]] den Weg bereitet. 70 % der Brückenfläche im Bundesbestand sind Spannbetonbrücken, 17 % Stahlbetonbrücken und 12 % Stahl- bzw. Stahlverbundbrücken [1].<br />
Brücken stellen nicht nur die kürzeste Verbindung bei der Überwindung von Taleinschnitten und Gewässern dar, sie prägen auch die Landschaft. Schlanke weitgespannte Konstruktionen fügen sich harmonisch in das Landschaftsbild ein. Diesbezüglich hat die [[Spannbeton|Spannbetonbauweise]] dem Baustoff [[Beton]] den Weg bereitet. 70 % der Brückenfläche im Bundesbestand sind Spannbetonbrücken, 17 % Stahlbetonbrücken und 12 % Stahl- bzw. Stahlverbundbrücken [1].<br />


Bauweisen und Bauverfahren<br />
'''Bauweisen und Bauverfahren'''<br/>
Für Brücken in Betonbauweise stehen verschiedene Verfahren zur Verfügung. Maßgeblich für die Auswahl sind die Geländebeschaffenheit und Gradiente, Brückenlänge und Spannweite sowie der wirtschaftliche Einsatz.<br />
Für Brücken in Betonbauweise stehen verschiedene Verfahren zur Verfügung. Maßgeblich für die Auswahl sind die Geländebeschaffenheit und Gradiente, Brückenlänge und Spannweite sowie der wirtschaftliche Einsatz.<br />
Die in den Anfangszeiten des Betonbrückenbaus ausschließlich angewendete Bauweise auf einem Lehrgerüst findet heute nur noch bei kurzen Spannweiten und niedrigen Brückenhöhen Anwendung. Das Lehrgerüst besteht aus Gerüstkonstruktionen, heute meist Lasttürmen, welche die Lasten aus Beton und [[Schalung]] unmittelbar oder über [[Fundamente]] vertikal in den Baugrund einleiten. In Naturschutzgebieten wird diese Bauweise als nicht zu duldende Beeinträchtigung betrachtet.<br />
Die in den Anfangszeiten des Betonbrückenbaus ausschließlich angewendete Bauweise auf einem Lehrgerüst findet heute nur noch bei kurzen Spannweiten und niedrigen Brückenhöhen Anwendung. Das Lehrgerüst besteht aus Gerüstkonstruktionen, heute meist Lasttürmen, welche die Lasten aus Beton und [[Schalung]] unmittelbar oder über [[Fundamente]] vertikal in den Baugrund einleiten. In Naturschutzgebieten wird diese Bauweise als nicht zu duldende Beeinträchtigung betrachtet.<br />
Zeile 15: Zeile 15:
Die [[Verbundträger|Stahlverbundbauweise]] kommt bei mittleren bis großen Spannweiten von 50 m bis 150 m zum Einsatz. Der Stahlüberbau wird von einem oder beiden Brückenlagern eingeschoben oder talseitig eingehoben. Die Fahrbahnplatten werden meist als Halbfertigteile auf die Stahllängsträger gelegt und erhalten eine [[Ortbeton|Ortbetonergänzung]].<br />
Die [[Verbundträger|Stahlverbundbauweise]] kommt bei mittleren bis großen Spannweiten von 50 m bis 150 m zum Einsatz. Der Stahlüberbau wird von einem oder beiden Brückenlagern eingeschoben oder talseitig eingehoben. Die Fahrbahnplatten werden meist als Halbfertigteile auf die Stahllängsträger gelegt und erhalten eine [[Ortbeton|Ortbetonergänzung]].<br />


Innovative Baustoffe im Brückenbau<br />
'''Innovative Baustoffe im Brückenbau'''<br/>
Die Weiterentwicklungen des Baustoffs Beton ermöglichen der Betonbauweise eine Ausweitung des Einsatzspektrums in Bereiche, die bisher anderen Baustoffen vorbehalten waren. Zu nennen sind hier der [[Hochfester Beton|hochfeste Beton]] und der ultrahochfeste Beton.<br />
Die Weiterentwicklungen des Baustoffs Beton ermöglichen der Betonbauweise eine Ausweitung des Einsatzspektrums in Bereiche, die bisher anderen Baustoffen vorbehalten waren. Zu nennen sind hier der [[Hochfester Beton|hochfeste Beton]] und der ultrahochfeste Beton.<br />
Ultra-Hochfester Beton (UHPC) ist ein besonders gefügedichter und daher sehr korrosionswiderstandsfähiger [[Hochleistungsbeton]] mit einer Druckfestigkeit von 150 N/mm² bis 200 N/mm². Bei der etwa 140 m langen Gärtnerplatzbrücke in Kassel tragen trotz einer Bemessungslast von 50 kN nur rd. 8,5 cm dicken Deckenplatten aus quer vorgespanntem UHPC Fußgänger und Fahrradfahrer über die Fulda. <br />
Ultra-Hochfester Beton (UHPC) ist ein besonders gefügedichter und daher sehr korrosionswiderstandsfähiger [[Hochleistungsbeton]] mit einer Druckfestigkeit von 150 N/mm² bis 200 N/mm². Bei der etwa 140 m langen Gärtnerplatzbrücke in Kassel tragen trotz einer Bemessungslast von 50 kN nur rd. 8,5 cm dicken Deckenplatten aus quer vorgespanntem UHPC Fußgänger und Fahrradfahrer über die Fulda. <br />


[[Fahrbahndecke|Fahrbahndecken]] aus Beton auf Brücken<br />
'''[[Fahrbahndecke|Fahrbahndecken]] aus Beton auf Brücken'''<br />
Bei kurzen Brücken ist es baubetrieblich und verkehrstechnisch von Vorteil, eine jenseits der Brücke gebaute [[Fahrbahndecke]] aus Beton über das Brückenbauwerk durchzuziehen. Die einschlägigen Regelungen der Straßenbaulastträger lassen diese Bauweise ausdrücklich zu. In dem Allgemeinen Rundschreiben Straßenbau Nr. 14/1995 des Bundesministeriums für Verkehr sind die Randbedingungen wie folgt angegeben:  
Bei kurzen Brücken ist es baubetrieblich und verkehrstechnisch von Vorteil, eine jenseits der Brücke gebaute [[Fahrbahndecke]] aus Beton über das Brückenbauwerk durchzuziehen. Die einschlägigen Regelungen der Straßenbaulastträger lassen diese Bauweise ausdrücklich zu. In dem Allgemeinen Rundschreiben Straßenbau Nr. 14/1995 des Bundesministeriums für Verkehr sind die Randbedingungen wie folgt angegeben:  
* Brückenlänge ≤ 15 m
* Brückenlänge ≤ 15 m

Version vom 9. Dezember 2015, 14:48 Uhr

Elbsteg in Magdeburg

Eigenständiges Gebiet de Ingenieurbaus.
Brücken stellen nicht nur die kürzeste Verbindung bei der Überwindung von Taleinschnitten und Gewässern dar, sie prägen auch die Landschaft. Schlanke weitgespannte Konstruktionen fügen sich harmonisch in das Landschaftsbild ein. Diesbezüglich hat die Spannbetonbauweise dem Baustoff Beton den Weg bereitet. 70 % der Brückenfläche im Bundesbestand sind Spannbetonbrücken, 17 % Stahlbetonbrücken und 12 % Stahl- bzw. Stahlverbundbrücken [1].

Bauweisen und Bauverfahren
Für Brücken in Betonbauweise stehen verschiedene Verfahren zur Verfügung. Maßgeblich für die Auswahl sind die Geländebeschaffenheit und Gradiente, Brückenlänge und Spannweite sowie der wirtschaftliche Einsatz.
Die in den Anfangszeiten des Betonbrückenbaus ausschließlich angewendete Bauweise auf einem Lehrgerüst findet heute nur noch bei kurzen Spannweiten und niedrigen Brückenhöhen Anwendung. Das Lehrgerüst besteht aus Gerüstkonstruktionen, heute meist Lasttürmen, welche die Lasten aus Beton und Schalung unmittelbar oder über Fundamente vertikal in den Baugrund einleiten. In Naturschutzgebieten wird diese Bauweise als nicht zu duldende Beeinträchtigung betrachtet.
Große Spannweiten mit mehr als 150 m, wie sie beim Überwinden tiefer Täler, Meeresarmen und Flüssen häufig vorkommen, werden in der Regel im Freivorbau gebaut. Hierbei wird der Brückenüberbau - meist aus Spannbeton – Stück für Stück an den schon fertiggestellten Abschnitt angebaut, ohne dass dabei eine Abstützung nach unten erfolgt. Ggf. erfolgt eine Abspannung nach oben. Die Schalung ist z. B. in einem Vorbauwagen installiert, der nach dem Ausschalen und Vorspannen eines Abschnitts auf dem Kragarm des Brückenträgers weiter nach außen verschoben wird, um dort den nächsten Betonierabschnitt einzuschalen. Bei mehrfeldrigen Brücken kragen vom Pfeilertisch zu beiden Seiten Träger aus, die im Gleichgewicht stehen und gegen Kippen gesichert sind. An diesen Kragarmen hängt die Schalung für den Brückenüberbau.
Mehrfeldbrücken ab ca. acht Feldern mit mittleren Spannweiten bis ca. 60 m werden in der Regel im Taktschiebeverfahren gebaut. Voraussetzungen sind konstante Krümmungen der Gradiente. 10 m bis 30 m lange Brückenelemente werden hier an einem oder an beiden Brückenwiderlagern hergestellt und anschließend hydraulisch über die Brückenpfeiler geschoben. Die Taktfertigung mit ständig gleichen Arbeiten und die Möglichkeit zur nahezu witterungsunabhängigen Fertigung in einer Feldfabrik ergeben kurze Bauzeiten. Ein Nachteil ist, dass verfahrensbedingt nur gleich bleibende Querschnitte hergestellt werden können, deren Konstruktionshöhe von der größten Spannweite bestimmt wird.
Bei mittleren Spannweiten, bei denen das Taktschiebeverfahren aufgrund variierender Querschnitte und/oder Gradienten nicht eingesetzt werden kann, wird die Vorschubrüstung verwendet. Als Stahlfachwerkträger spannt sie zwischen zwei Brückenpfeilern und trägt die Schalungskonstruktion. Nach dem Erhärten des Betons wird sie um einen Takt, meist ein Brückenfeld, vorgeschoben.
Brücken aus werksmäßig hergestellten Betonfertigteilen ermöglichen sehr kurze Bauzeiten, sind aber wegen der Limitierungen der Transportabmessungen der Fertigteile nur bei kleineren Spannweiten bis ca. 40 m einsetzbar. Diese Bauweise weist dort die größten Vorteile auf, wo Verkehrswege überbrückt werden müssen, die – wenn überhaupt – nur kurzzeitig gesperrt werden dürfen. Die Planung von Transport, Kranstellplätzen und Montage stellt hohe Anforderungen an die Baustellenorganisation. Wirtschaftlich ist der Einsatz bei vielen Brückenfeldern mit immer gleichen Querschnitten der Träger.

Überbauten bei Balkenbrücken aus Beton werden bei größeren Spannweiten meist als Hohlkästen hergestellt. Die Spannglieder bei der externen Vorspannung, die aus Gründen der besseren Wartungsmöglichkeiten angewendet wird, werden korrosionsgeschützt in Hüllrohren im Hohlkasten geführt. Die Kräfte aus der Vorspannung werden über seitliche Konsolen in die Konstruktion geleitet. Bei kleineren Spannweiten kommen Plattenbalkenkonstruktionen zum Einsatz, Plattenbrücken meist nur bis 30 m Spannweite.

Die Stahlverbundbauweise kommt bei mittleren bis großen Spannweiten von 50 m bis 150 m zum Einsatz. Der Stahlüberbau wird von einem oder beiden Brückenlagern eingeschoben oder talseitig eingehoben. Die Fahrbahnplatten werden meist als Halbfertigteile auf die Stahllängsträger gelegt und erhalten eine Ortbetonergänzung.

Innovative Baustoffe im Brückenbau
Die Weiterentwicklungen des Baustoffs Beton ermöglichen der Betonbauweise eine Ausweitung des Einsatzspektrums in Bereiche, die bisher anderen Baustoffen vorbehalten waren. Zu nennen sind hier der hochfeste Beton und der ultrahochfeste Beton.
Ultra-Hochfester Beton (UHPC) ist ein besonders gefügedichter und daher sehr korrosionswiderstandsfähiger Hochleistungsbeton mit einer Druckfestigkeit von 150 N/mm² bis 200 N/mm². Bei der etwa 140 m langen Gärtnerplatzbrücke in Kassel tragen trotz einer Bemessungslast von 50 kN nur rd. 8,5 cm dicken Deckenplatten aus quer vorgespanntem UHPC Fußgänger und Fahrradfahrer über die Fulda.

Fahrbahndecken aus Beton auf Brücken
Bei kurzen Brücken ist es baubetrieblich und verkehrstechnisch von Vorteil, eine jenseits der Brücke gebaute Fahrbahndecke aus Beton über das Brückenbauwerk durchzuziehen. Die einschlägigen Regelungen der Straßenbaulastträger lassen diese Bauweise ausdrücklich zu. In dem Allgemeinen Rundschreiben Straßenbau Nr. 14/1995 des Bundesministeriums für Verkehr sind die Randbedingungen wie folgt angegeben:

  • Brückenlänge ≤ 15 m
  • keine Übergangskonstruktionen erforderlich

Zu beachten ist, dass zwischen Decke und Überbau ein Vlies oder ein Geotextil verlegt werden muss, damit keine Verbundwirkung entsteht. Die Betonfahrbahndecke sollte in gleicher Dicke wie auf der anschließenden Strecke über das Brückenbauwerk durchgeführt werden.
Fahrbahndecken aus Beton auf langen Brücken und auf Brücken mit großen Stützweiten bleiben auf Einzelfälle beschränkt, da das größere Gewicht einer Fahrbahndecke aus Beton zu konstruktiven und finanziellen Mehraufwendungen führt und Schwingungen und Durchbiegungen des Brückenüberbaus Schäden an der Fahrbahndecke verursachen können.

Literatur

[1] Joachim Naumann: Brückenertüchtigung jetzt – Ein wichtiger Beitrag zur Sicherung der Mobilität auf Bundesfernstraßen. Heftreihe Deutscher Beton- und Bautechnik-Verein e.V. Heft 22