Carbonatisierung: Unterschied zwischen den Versionen

Aus beton.wiki
Zur Navigation springen Zur Suche springen
K (Buechel verschob die Seite Karbonatisierung nach Carbonatisierung)
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
[[Datei:Karbonatisierungsfront.jpg|mini|gerahmt|Feuchtegehalt des Betons und Karbonatisierungsfront]]
[[Datei:Karbonatisierungsfront.jpg|mini|gerahmt|Feuchtegehalt des Betons und Carbonatisierungsfront]]
[[Datei:Karbonatisierungstiefe.jpg|mini|gerahmt|Einfluss der Bauteillage im Freien auf die Karbonatisierungstiefe]]Bildung von [[Calciumcarbonat]] aus dem Kalkhydrat des [[Zementstein]]s infolge Einwirkung von [[Kohlensäure]]: Ca(OH)<sub>2</sub> + CO<sub>2</sub> ergibt CaCO<sub>3</sub> + H<sub>2</sub>O. Die [[Kohlensäure]] kann aus der umgebenden Luft stammen oder durch kohlensäurehaltiges Wasser zugeführt werden. Für den Rostschutz der [[Bewehrung]] von [[Stahlbeton]] ist die Karbonatisierung von größter Wichtigkeit, da hinter der Karbonatisierungsfront durch die Umwandlung des Kalkhydrats das für den [[passiver Korrosionsschutz|passiven Korrosionsschutz]] erforderliche alkalische Milieu verloren geht. Die [[Betondeckung]] muss immer so dick sein, dass die karbonatisierte Schicht (Karbonatisierungsfront) nicht bis an die [[Bewehrung]] heranreicht. <br>Die Überprüfung, ob ein Beton karbonatisiert ist, erfolgt z. B. an Bruchflächen mit [[Phenolphthalein]].<br>Die Aufnahmefähigkeit des Betons für Kohlensäure - und damit der Fortschritt der Karbonatisierung - hängt stark von seinem Feuchtegehalt ab. Wassergesättigte Körper nehmen praktisch kein CO<sub>2</sub> auf. Aber auch ein vollständig trockener Betonkörper karbonatisiert nicht weiter, da ein gewisser Feuchtegehalt Voraussetzung für den Ablauf der chemischen Reaktion ist. Daher karbonatisieren Bauteile, die direktem Niederschlag ausgesetzt sind, langsamer als Bauteile im Freien, die vor direktem Niederschlag geschützt sind.
[[Datei:Karbonatisierungstiefe.jpg|mini|gerahmt|Einfluss der Bauteillage im Freien auf die Karbonatisierungstiefe]]Bildung von [[Calciumcarbonat]] aus dem Kalkhydrat des [[Zementstein]]s infolge Einwirkung von [[Kohlensäure]]: Ca(OH)<sub>2</sub> + CO<sub>2</sub> ergibt CaCO<sub>3</sub> + H<sub>2</sub>O. Die [[Kohlensäure]] kann aus der umgebenden Luft stammen oder durch kohlensäurehaltiges Wasser zugeführt werden. Für den Rostschutz der [[Bewehrung]] von [[Stahlbeton]] ist die Carbonatisierung von größter Wichtigkeit, da hinter der Carbonatisierungsfront durch die Umwandlung des Kalkhydrats das für den [[passiver Korrosionsschutz|passiven Korrosionsschutz]] erforderliche alkalische Milieu verloren geht. Die [[Betondeckung]] muss immer so dick sein, dass die carbonatisierte Schicht (Carbonatisierungsfront) nicht bis an die [[Bewehrung]] heranreicht. <br>Die Überprüfung, ob ein Beton carbonatisiert ist, erfolgt z. B. an Bruchflächen mit [[Phenolphthalein]].<br>Die Aufnahmefähigkeit des Betons für Kohlensäure - und damit der Fortschritt der Carbonatisierung - hängt stark von seinem Feuchtegehalt ab. Wassergesättigte Körper nehmen praktisch kein CO<sub>2</sub> auf. Aber auch ein vollständig trockener Betonkörper carbonatisiert nicht weiter, da ein gewisser Feuchtegehalt Voraussetzung für den Ablauf der chemischen Reaktion ist. Daher carbonatisieren Bauteile, die direktem Niederschlag ausgesetzt sind, langsamer als Bauteile im Freien, die vor direktem Niederschlag geschützt sind.

Version vom 11. April 2015, 17:57 Uhr

Datei:Karbonatisierungsfront.jpg
Feuchtegehalt des Betons und Carbonatisierungsfront
Datei:Karbonatisierungstiefe.jpg
Einfluss der Bauteillage im Freien auf die Karbonatisierungstiefe

Bildung von Calciumcarbonat aus dem Kalkhydrat des Zementsteins infolge Einwirkung von Kohlensäure: Ca(OH)2 + CO2 ergibt CaCO3 + H2O. Die Kohlensäure kann aus der umgebenden Luft stammen oder durch kohlensäurehaltiges Wasser zugeführt werden. Für den Rostschutz der Bewehrung von Stahlbeton ist die Carbonatisierung von größter Wichtigkeit, da hinter der Carbonatisierungsfront durch die Umwandlung des Kalkhydrats das für den passiven Korrosionsschutz erforderliche alkalische Milieu verloren geht. Die Betondeckung muss immer so dick sein, dass die carbonatisierte Schicht (Carbonatisierungsfront) nicht bis an die Bewehrung heranreicht.
Die Überprüfung, ob ein Beton carbonatisiert ist, erfolgt z. B. an Bruchflächen mit Phenolphthalein.
Die Aufnahmefähigkeit des Betons für Kohlensäure - und damit der Fortschritt der Carbonatisierung - hängt stark von seinem Feuchtegehalt ab. Wassergesättigte Körper nehmen praktisch kein CO2 auf. Aber auch ein vollständig trockener Betonkörper carbonatisiert nicht weiter, da ein gewisser Feuchtegehalt Voraussetzung für den Ablauf der chemischen Reaktion ist. Daher carbonatisieren Bauteile, die direktem Niederschlag ausgesetzt sind, langsamer als Bauteile im Freien, die vor direktem Niederschlag geschützt sind.